Chapter 16: Sorting, Searching, and
Algorithm Analysis

Starting Out with Java
From Control Structures through Data Structures

by Tony Gaddis and Godfrey Muganda

AddiVSV(e)zgley Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter Topics

« Introduction to Sorting Algorithms
« Introduction to Searching Algorithms
« Analysis of Algorithms

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

What is Sorting?

« An array A[] of N numbers is sorted in
ascending order if the array entries increase (or
never decrease) as indices increase:

A0l All L AN-2] AN-1]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

What is Sorting?

Example of an array sorted in ascending
order:

20 25 30 40 55

Example of an array that is not sorted in
ascending order:

20 25 15 40 12

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example of a Sorted Array

60

40

20

20 25 30

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

40

55

An Array That is Not Sorted

60

40

20

20 25 15 40 12

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Sorting Algorithms

There are many strategies for sorting arrays.

Among them:
— Bubble sort
— Selection sort
— Insertion sort
— Quicksort

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Notation

« Let A[] be an array of length N

 Let last be an index in the range of the
array:

0 last N-1

« A[0..last] denotes the portion of the array
consisting of A[O], A[1], ..., A[last]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Simple Sorting Strategy

for (last = N-1; last >= 1; last --)

{
Move the largest entry in A[O...last] to A[last]

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Simple Sorting Strategy

How it works on 15 35 20 10 25.
Portion of array already sorted in orange.

Largest value in unsorted portion of array in bright blue.
1535201025

« Move largest of A[0..4] to A[4]: 1520 10 25 35
« Move largest of A[0..3] to A[3]: 1520 10 25 35
« Move largest of A[0..2] to A[2]: 1510 20 25 35
« Move largest of A[0..1]to A[1]: 10 15 20 25 35

for (last = 4; last >= 1; last--)

{
Move largest of A[O..last] to A[last]

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 10

Selection and Bubble Sort

« Selection and Bubble Sort are similar: both use
the Simple Sorting Strategy of the previous slide.

« Selection and Bubble Sort differ in how they
implement the step:

Move the largest of A[O..last] to A[last]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11

Bubble Sort

Bubble Sort moves the largest entry to the end
of A[O..last] by comparing and swapping
adjacent elements as an index sweeps through
the unsorted portion of the array:

1535201025
1535201025
1520 3510 25
1520 3510 25
1520 10 3525
152010 35 25
15201025 35

//Compare A[0], A[1], no swap
//Compare A[1], A[2], swap

//Compare A[2], A[3], swap

//Compare A[3], A[4], swap
//Largest is at A[4]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 12

Bubble sort uses an index to keep track of which pair of
adjacent elements should be swapped during a sweep
through A[O..last].

1535201025 //index =0, Compare A[0], A[1]
1535201025 //index =1, Compare A[1], A[2], swap
1520351025

1520351025 //index =2, Compare A[2], A[3], swap
1520 103525

1520103525 //index =3, Compare A[3], A[4], swap
1520102535 //Largestis at A[4]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 13

Bubble Sort

To accomplish the step:
move largest of A[0..last] to A[last]

Bubble Sort sweeps an index from 0 to last-1, swapping adjacent
entries to put the largest element seen so far at index + 1:

for (index = 0; index <= last -1; index++)
{ //[swap adjacent elements if necessary
if (A[index] > A[index+1])

{
int temp = AJindex];
Alindex] = A[lindex+1];
Alindex + 1] = temp;
}
}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

14

Bubble Sort

To sort an array A[0..N-1]:

for (int last = N -1; last >= 1; last --)
{
// Move the largest entry in A[O...last] to A[last]
for (int index = 0; index <= last-1; index++)
{
//swap adjacent elements if necessary
if (A[index] > A[index+1])

{
int temp = Afindex];
AJindex] = A[index+1];
Alindex + 1] = temp;

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

15

Selection Sort

Selection sort, like Bubble sort, is based on a
strategy that repeatedly executes the step:

Move the largest of A[O..last] to A[last]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

16

Selection Sort

Selection Sort moves the largest entry to the
end of A[O..last] by determining the position
maxIndex of the largest entry, and then
swapping A[maxIndex] with A[last]:

Selection Sort uses 2 variables:

1. index: keeps track of the portion A[0..index] that has already
been examined: index will range from 0 to last.

2. maxindex: keeps track of the position of the largest entry in
A[0..index]. When index equals last, the variable maxindex will
be the position of the largest entry in A[O..last].

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 17

Determining the position of the largest entry

The portion of A[O..last] already examined while looking
for the largest entry is in orange.

The largest entry found in the portion already examined
s in bright blue.

20 35 25 1550 40 60 45 30 iIndex = 0, maxindex =0
20 3525 1550 40 60 45 30 iIndex = 1, maxindex = 1
20 35251550 40 60 45 30 iIndex = 2, maxindex = 1
20 3525 1550 40 60 45 30 iIndex = 3, maxindex = 1

20 3525 1550 40 60 45 30 iIndex = 4, maxindex = 4
20 3525 1550 40 60 45 30 iIndex = 5, maxindex = 4
20 3525 1550 40 60 45 30 iIndex = 6, maxindex = 6
20 3525 1550 40 60 45 30 iIndex = 7, maxindex = 6
20 3525 1550 40 60 45 30 iIndex = 8, maxindex = 6

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 18

Selection Sort:
Determining the Position of the Largest Entry

int maxIindex = 0;
for (int index = 1; index <= last; index++)

{
if (A[index] > A[maxIndex])
maxlndex = index;

}

// maxIndex is position of largest in A[0..last]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

19

The Simple Sorting Strategy
Adapted for Selection Sort

for (last = N -1; last >= 1; last --)

{
//Move the largest entry in A[O...last] to Aflast]
//Determine Position of the Largest entry in A[O..last]
iInt maxindex = Pos. of the Largest entry in A[O..last]
swap A[maxIndex] with A[last]

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 20

Selection Sort

for (last = N -1; last >= 1; last --)

{
//Move the largest entry in A[0...last] to A[last]
//Determine position of largest in A[0..last] and store in maxIndex
int maxindex = 0;
for (int index = 1; index <= last; index++)
{
if (Alindex] > Al[maxIndex])
maxlndex = index;
}

// maxIindex is position of largest in A[O..last]
// swap A[maxIndex] with A[last]
int temp = A[maxIndex];
AlmaxIndex] = A[last];
Allast] = temp;
}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

21

Insertion Sort

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

22

Insertion Sort

* Note that for any array A[0..N-1], the portion
AJ0..0] consisting of the single entry A[0] is
already sorted.

 Insertion Sort works by extending the length of
the sorted portion one step at a time:

— A[O] is sorted

— AJ0..1] is sorted

— AJ0..2] is sorted

— A[0..3] is sorted, and so on, until A[0..N-1] is sorted.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 23

Insertion Sort

The strategy for Insertion Sort:

//AJ0..0] is sorted
for (index = 1; index <= N -1; index ++)

{
// A[O..index-1] is sorted

iInsert A[index] at the right place in A[O..index]
// Now AJ0..index] is sorted

}

// Now A[0..N -1] is sorted, so entire array is sorted

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

24

How Insertion Sort Works

151055353020
10 15553530 20
101555353020
101555353020
1015553530 20
1015355530 20
1015355530 20
101530 3555 20
101530 35 55 20
101520 30 35 55
10 1520 30 35 55

index = 1, Insert A[1] = 10 into A[O..1]:

index = 2, Insert A[2] = 55 into A[0..2]:

index = 3, Insert A[3] = 35 into A[0..3]:

index = 4, Insert A[4] = 30 into A[0..4]:

index = 5, Insert A[5] = 20 into A[0..5]:

Array is now sorted

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

25

A Closure Look at the Logic of the Insertion Step

A[0..4] is already sorted, insert A[5] into A[0..5]:
101530 355520 index =5, Insert A[5] = 20 into A[0..5]
unsortedValue = 20, will scan for the right place to put it.

Use a variable scan to find the place where A[scan-1] is less or
equal to unsortedValue:

1015303555 // scan =5

10153035 55 // scan =4

101530 _ 3555 // scan = 3

1015 303555 // scan = 2

Drop in the unsorted value:

101520 30 35 55 /I A[scan] = unSortedValue

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 26

Insertion Sort:
iInsert A[lindex] at the right place in A[0..index]

//A]0..index] is already sorted
int unSortedValue = A[index];
scan = index;
while (scan > 0 && A[scan-1] > unSortedValue)
{
A[scan] = A[scan-1];
scan --;
}
// Drop in the unsorted value
A[scan] = unSortedValue;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

27

Insertion Sort

//AJ0..0] is sorted
for (index = 1; index <= N -1; index ++)
{
// AJO..index-1] is sorted
// insert A[index] at the right place in A[O..index]
int unSortedValue = Alindex];
scan = index;
while (scan > 0 && A[scan-1] > unSortedValue)
{
A[scan] = A[scan-1];
scan --;
}
// Drop in the unsorted value
A[scan] = unSortedValue;
// Now AJO..index] is sorted
}

// Now A[0..N -1] is sorted, so entire array is sorted

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

28

Quicksort

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

29

To sort a segment A[start..end] of an array,

Quicksort

Quicksort partitions it into three parts:

start

pivotPoint

end

Less than X

X

Greater or equal to X

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

30

Quicksort

For example, in the array
50679383903268 13 75 57

You can select A[0] = 50 to be the pivot value
and then partition as follows:

32 13506793 839068 75 57

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

31

Result of the Partition Step

3213 506793839068 7557

Notice:

1. The pivot value, 50, is in the right place relative to
all the other elements! It is where it would be if the
array were sorted.

2. The lists on the left and right side of the pivot point
are not sorted, but they are shorter!

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 32

Qu

32 13 50 67 93
Every time we partiti

iIcksort

83 90 68 75 57
on, the pivot value is in the

right place relative to all the other elements of

the list.

If we recursively carry out the same procedure
on the sublists to the left and right of the pivot

point, we will keep p
right position while s

acing the pivot values in the
nortening the remaining

sublists. Eventually t

ne sublists get down to a

length of 1 or zero, then the whole array is

sorted!

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson

Addison-Wesley

33

Quicksort

« Suppose we have a method to do the
partitioning of an array segment A[start..end]:

int partition(int A[], int start, int end)

« The method partitions the segment and returns
the pivot point.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

34

Quicksort

« This recursive procedure will repeatedly partition the sublists until
A[start..end] is sorted:

void doQuicksort(int A[], int start, int end)
{

if (start < end)

{
// partition A[start..end] and get the pivot point
int pivotPoint = partition(A, start, end);
// recursively do the first sublist
doQuicksort(A, start, pivotPoint-1);
// recursively do the second sublist
doQuicksort(A, pivotPoint+1, end);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

35

Quicksort

To sort the entire array A[0..N -1], simply call
doQuicksort and pass it 0 and N-1 for start and
end:

void Quicksort(int A[])

{
doQuicksort(A, 0, N — 1);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

36

How to Partition

Given an array segment A[start..end], we want

to partition it and return the pivot point:

start

pivotPoint

end

Less than X

X

Greater or equal to X

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

37

How to Partition Afstart..end]

 Arbitrarily choose X= A[start] as the pivotValue,
so start is the initial pivotPoint.

« Use a variable endOfLeftList to mark the end of
the segment of values smaller than X, and the
beginning of the segment of values larger than
or equalto X

« Use a variable scan to mark the end of the

segment that is larger than or equal to X

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

38

« A typical stage in the execution of partition.

How to Partition Afstart..end]

« Initially: endOfLeftList = start and scan = start+1.

start

endOflLeftList

scan end

X

Less than X

Greater or equal to X

Unknown

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

39

The End Stage of Partition

At the end, endOfLeftList may still be equal to start.
If not, then AlendOfLeftList] < X.

Swap A[start] with A[endOfList] to get X between the two
sublists.

start endOfLeftList scan

X | Less than X | Greater or equal to X

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 40

How to Partition Afstart..end]
int partition(int A[], int start, int end)
{
int pivotValue = A[start];
endOfLeftList = start;
// At this point A[endOfLeftList] == pivotValue
for (int scan = start + 1; scan <= end; scan ++)

{
if (A[scan] < pivotValue)
{
endOfLeftList ++;
swap(A, endOfLeftList, scan);
// At this point A[endOfLeftList] < pivotValue
}
)

// Move the pivotValue between the left and right sublists
swap(A, start, endOfLeftList);
return endOfLeftlList;

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

41

Array Searching Algorithms

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

4?2

Array Searching Algorithms

Two methods for searching an array for a given
item:
1. The Sequential Search method can be used with
any array.

2. The Binary Search method can only be used with
arrays that are known to be sorted, but is much
faster than Sequential Search.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 43

Sequential Search

« To search an array A[0..N-1] for a value X, start
an index at one end of the array, say 0.

« Step index through the array, examining each
Alindex] to see if it is equal to X.

« Stop if you find X and return index. Otherwise
you get to the end of the array and return -1.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

44

Sequential Search
Search an array A[0..N-1] for X

int search(int A[], int X)
{

// Default assumption is X won'’t be found
int position = -1;
boolean found = false;

int index = 0;
while (found && index < N)
{
// check Alindex]
if (Alindex] == X)
{
found = true;
position = index;
}
index ++;
}
return position;

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Efficiency of Sequential Search

 In the worst case, you search the entire array,
peforming N comparisons

« If you are lucky, you find X the first place you
look, requiring only one comparison

« On average, you perform N/2 comparisons

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

46

Binary Search

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

47

Binary Search

« Works on a sorted portion A[lower..upper]:

« Compare X to Almiddle], where middle is the midpoint between
lower and upper:

middle = (lower + upper)/2
« If X == Almiddle], return middle (we found it!)

« |f X < A[middle], then continue search in A[lower..middle-1]

- If X > A[middle], then continue search in A[middle+1..upper]

« Search terminates if X is found, or when we try to search an empty
segment.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

48

Binary Search of A[lower..upper]

« To continue search in A[llower..middle-1], keep

lower the same and replace upper with middle-1:

upper = middle -1

« To continue search in Aimiddle+1..upper],
replace lower with middle+1 and keep upper the
same:

lower = middle+1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

49

Binary Search of A[0..N-1]

// returns index of X if found, -1 otherwise
int binSearch(int A[], int X)
{
int lower = 0, upper = N-1;
int position = -1; // index of X to be returned
boolean found = false; // assumption is X will not be found
//'if X is there, it must be in A[lower..upper]
while (!found && lower <= upper)
{ //if Xis there, it must be in A[lower..upper]
int middle = (lower + upper)/2;
if (A[middle] == X)
{
found = true; position = middle;
}
else if (A[middle] > X)
{ //if Xis there, it is in A[lower..middle-1]
upper = middle -1;
}

else
{ // Almiddle < X. if X is there, it is in Al[middle+1, upper]

lower = middle +1;
}
}
return position;

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Recursive Binary Search

- The logic of binary search has a natural recursive
implementation:

 If lower > upper, then return -1 (base case).

« Compare X to Al[middle], where middle is the midpoint between
lower and upper:

middle = (lower + upper)/2
« |If X == A[middle], return middle (we found it!)
« If X < A[middle], then continue search in A[lower..middle-1]

« |If X > A[middle], then continue search in Ajmiddle+1..upper]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

51

Recursive Binary Search of A[lower..upper]

int binSearch(int A[], int lower, int upper, int X)
{
// check base case for missing X
if (lower > upper)
return -1;
// check if X is at the middle
int middle = (lower + upper)/2;
if (A[middle] == X)
return middle;
// determine which segment to continue search in
if (A[middle] < X)
return binSearch(A, middle+1, upper, X);
else
return binSearch(A, lower, middle-1, X);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Efficiency of Binary Search

« A basic step in binary search is to split the array,
compare X to the middle element, and then

select the half of the array in which to continue
the search

« Each basic step reduces the size of the array to
half the previous size

« If the array has size N, binary search will require
no more than log N basic steps in the worst case

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

53

Efficiency of Binary Search

Binary Search is very efficient: large increases in
the size of the array require very small increases
In the number of basic steps, approximately:

size of array # steps needed
500 8
1 thousand 10
1 million 20

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

54

Analysis of Algorithms

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

55

Efficiency of Algorithms

« Usually there is more than one algorithm for
solving a given problem.

« One algorithm may be more efficient than
another, that is, it may need less time, or less
memory, to solve a problem of a given size

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

56

Criteria for Measuring Efficiency

« Time: the time efficiency of an algorithm is
measured by the time complexity function of the
algorithm.

- Space: the space efficiency of an algorithm is
measured by its space complexity function.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 57

Computational Problems

« A computational problem is a problem that is
meant to be solved by an algorithm.

« A computational problem is described by
specifying the data to be input to the algorithm,
and the output that should be produced by the
algorithm

« Each possible input is called an instance of the
problem

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

58

Instances of Problems

« Each instance is characterized by its size, the
amount of memory occupied by the input data
that describes the instance.

« The size of an instance is the number of bits
occupied by the input, but is usually specified by
giving an integer that allows us to deduce the
actual size in bits.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

59

A Typical Description of a Computational Problem

The problem of summing an array:

INPUT: an array of size N.

SIZE OF INPUT: Nis the number of entries in
the array.

OUTPUT: an integer representing the sum of
the array entries.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

60

The Time Complexity Function

« The time complexity f(N) of an algorithm is
determined by counting the number of basic
steps executed by the algorithm when solving an
instance of size N.

« A basic step Is an operation that is executed In
constant time, that is, the time to execute the
operation does not increase even if the size of
the input increases.

« A basic step is a theoretical approximation for an
operation that could be built into the hardware of
any reasonable computer.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 61

Basic Operations

« A basic step is also called a basic operation.

« Basic steps do not specify the constant time in
which they execute: we do not differentiate
between a basic step that executes in Tmsec
and one that executes in 1000 msec.

« Ignoring constant factors in this manner allows
the theory to be applicable to computers with
different built-in hardware operations and
different technologies.

 Ignoring constant factors also means we do not
differentiate between 1 basic operation, or 10, or
even 100 basic operations.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 62

Computing the Complexity Function of an
Algorithm

« We do not need to count all basic operations
performed by the algorithm

« For example, if a loop executes N times and
each loop iteration executes a constant number
of basic operations, the entire loop executes N
basic operations

« For most algorithms, we can pick one type of
basic operation and count just that to determine
the complexity of the algorithm.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

63

Selecting the Basic Operations to Count

« For most algorithms we can count just one or
two types of basic operations.

« Select operations that are germane to the
problem: for example, sorting and searching
algorithms should count comparisons between
array entries.

« Select at least one operation in every loop.

64

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Average and Worst Case Complexity

« An algorithm may require a different number of basic
steps in solving two different instances of the same size:
When searching for X'in an array of size N, Sequential
search may find X after only 1 comparison, or may
require N comparisons.

« The average case complexity function averages the

number of basic steps required over all instances of size
N.

« The worst case complexity function is the number of
basic steps required for those instances of size N that
require the most work to solve.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 65

Average Case Complexity

e |Is a good measure to use when you want to
know how an algorithm is likely to perform in
practice.

« Requires a knowledge of the frequency
distribution of problem instances: how often
each instance is likely to appear in practice.

« |s difficult to use in practice because reliable
estimates of frequency distributions are usually
not available

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 66

Worst Case Complexity

« Measures the efficiency of an algorithm by how it
does on the worst case inputs.

 |s a good measure to use when you want a
performance guarantee.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

67

Worst Case Complexity

« The math involved in computing the worst case

complexity is easier than the math in average
case complexity.

« For these reasons, analysis of algorithms is
usually based on worst case complexity.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

68

Comparing Algorithms by Their Complexity
Functions

« Let Fand G be two algorithms for solving a
problem, and let their complexity functions be
f(n) and g(n).

« To see the relative performance of the two
algorithms, look at the ratio f(n)/g(n) as n gets
large.

« We assume that f(n) > 0 and g(n) > 0 for all n >
0.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

69

Comparing Complexity Functions

Simplest case in comparing two algorithms is
when the limit f(n)/g(n) exists as n goes to
infinity. There are three possible cases where
the limit exists:

— Limit of f(n)/g(n) is a positive constant K
— Limit of f(n)/g(n) is infinite
— Limit of A{n)/g(n) is O

NS S’

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 70

Comparing Complexity Functions

Algorithm F has complexity function f(n)
Algorithm G has complexity function g(n)

If the limit of f(n)/g(n) is infinite, then Algorithm
F is taking a lot more time than G as the size
of the problem gets bigger, so G is more
efficient.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 71

Comparing Complexity Functions

Algorithm F has complexity function f(n)
Algorithm G has complexity function g(n)

If limit of f(n)/g(n) is zero, then Algorithm G is
taking a lot more time than F as the size of the
problem gets bigger, so F is more efficient.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 72

Comparing Complexity Functions

Algorithm F has complexity function f(n)
Algorithm G has complexity function g(n)

If the limit of f(n)/g(n) is a positive constant K,
then Algorithm Fis performing Ktimes as
many basic operations as G. But constant
factors are not significant, so Fand G perform
the same number of basic operations for
really large problems sizes.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

73

The Big O Notation

« In general, the limit f(n)/g(n) may not exist.

« Nevertheless, there may be a positive constant K
such that fin)/g(n)* Kwhen n gets large enough.

« [f this happens, it means growth of g(n) keeps
pace with growth of f(n) and keeps f(n)/g(n) from
going to infinity.

« This means that algorithm Fis no worse than G,
and we say fis in O(g)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 74

Space Complexity Functions

« The space complexity function f(N) of an
algorithm is a measure of the amount of memory

the algorithm requires to solve a problem of size
N.

« Space complexity as a measure of efficiency is
not often used in theoretical analysis of
algorithms, partly because cost of memory
keeps declining.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 75

